Bounds for the second Hankel determinant of certain bi-univalent functions
نویسندگان
چکیده
منابع مشابه
Bounds for the second Hankel determinant of certain univalent functions
*Correspondence: [email protected] 1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Full list of author information is available at the end of the article Abstract The estimates for the second Hankel determinant a2a4 – a3 of the analytic function f (z) = z + a2z + a3z + · · · , for which either zf ′(z)/f (z) or 1 + zf ′′(z)/f ′(z) is subordinate to a certai...
متن کاملBounds for the second Hankel determinant of certain bi-univalent functions
Bounds for the second Hankel determinant of certain bi-univalent functions Halit ORHAN, Nanjundan MAGESH, Jagadeesan YAMINI Department of Mathematics Faculty of Science, Atatürk University 25240 Erzurum, Turkey. Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India. Department of Mathematics, Govt First Grade College Vijayana...
متن کاملCoefficient Bounds for Certain Subclasses of Bi-univalent Functions
In this paper, we introduce and investigate two new subclasses of the function class Σ of bi-univalent functions. Also, we find estimates of |a2| and |a3|. Some related consequences of the results are also pointed out. Mathematics Subject Classification: 30C45
متن کاملSecond Hankel Determinant for Certain Classes of Analytic Functions
G. Shanmugam, Research Scholar, Department of Mathematics, Madras Christian College, Tambaram, Tamil Nadu, India. E-mail: [email protected] B. Adolf Stephen, Associate Professor, Department of Mathematics, Madras Christian College, Tambaram, Tamil Nadu, India. E-mail: [email protected] K. G. Subramanian, Professor, School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2016
ISSN: 1300-0098,1303-6149
DOI: 10.3906/mat-1505-3